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ABSTRACT

The discovery that neutrinos have mass has important consequences for cosmology. The main
effect of massive neutrinos is to suppress the growth of cosmic structure on small scales.
Such growth can be accurately modelled using cosmological N-body simulations, but doing
so requires accurate initial conditions (ICs). There is a trade-off, especially with first-order
ICs, between truncation errors for late starts and discreteness and relativistic errors for early
starts. Errors can be minimized by starting simulations at late times using higher-order ICs. In
this paper, we show that neutrino effects can be absorbed into scale-independent coefficients
in higher-order Lagrangian perturbation theory (LPT). This clears the way for the use of
higher-order ICs for massive neutrino simulations. We demonstrate that going to higher order
substantially improves the accuracy of simulations. To match the sensitivity of surveys like
DESI and Euclid, errors in the matter power spectrum should be well below 1%. However, we
find that first-order Zel’dovich ICs lead to much larger errors, even when starting as early as
z =127, exceeding 1% at z = 0 for k > 0.5 Mpc~! for the power spectrum and k > 0.1 Mpc™!
for the equilateral bispectrum in our simulations. Ratios of power spectra with different neutrino
masses are more robust than absolute statistics, but still depend on the choice of ICs. For all
statistics considered, we obtain 1% agreement between 2LPT and 3LPT at z = 0.

Key words: methods: numerical — cosmology: theory — large-scale structure of Universe —

dark matter — physical data and processes: neutrinos

1 INTRODUCTION

The neutrino content of the Universe, Q, = > m, /(93 eV hz),
becomes a powerful probe for cosmology once the implied neu-
trino masses are confronted with data from neutrino oscillations
(Esteban et al. 2020) and the kinematics of S-decay (Aker et al.
2021). A non-zero detection of €, would be consequential for
fundamental physics. It would confirm that a background of relic
neutrinos survived until the epoch of structure formation, provide
insight into the origin of neutrino mass, and constrain the search
for dark matter and dark sectors. Oscillation experiments provide a
lower bound of ) m, > 0.058 eV, while cosmology provides upper
bounds of ), m, < 0.15 eV or better assuming ACDM (Palanque-
Delabrouille et al. 2020; Choudhury & Hannestad 2020; Porredon
et al. 2021; Di Valentino et al. 2021), with ongoing and future sur-
veys promising significant further improvement. Planck and future
cosmic microwave background experiments, together with large-
scale structure surveys like DESI, Euclid, and Vera Rubin, could
achieve sensitivities in the 0.01 - 0.02 eV range (Hamann et al.
2012; Abazajian et al. 2015; Brinckmann et al. 2019; Chudaykin &
Ivanov 2019). Such small shifts in neutrino mass correspond to tiny
0.5% - 1.5% effects on the power spectrum of matter fluctuations
on 0.1 Mpc~! to 1 Mpc~! scales, requiring theoretical predictions
that are at least as accurate.
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With this goal in mind, many groups have studied the effects
of massive neutrinos on large-scale structure. At early times and on
large enough scales, perturbation theory is the method of choice for
this purpose. Cosmological perturbation theory (Bernardeau et al.
2002) is essential for providing analytical insight and a necessary
complement to more expensive numerical simulations. The effects
of neutrinos on the nonlinear matter power spectrum were first calcu-
lated at one-loop by Saito et al. (2008) and Wong (2008). Subsequent
work has dealt more realistically with the neutrino phase-space dis-
tribution (Shoji & Komatsu 2010; Dupuy & Bernardeau 2014; Blas
et al. 2014; Fithrer & Wong 2015; Levi & Vlah 2016; Chen et al.
2021), which parallels similar efforts on the numerical simulations
side. Other advances were made by including neutrinos in the ef-
fective field theory of large-scale structure (Senatore & Zaldarriaga
2017; Colas et al. 2020) and using time renormalisation group per-
turbation theory (Lesgourgues et al. 2009; Upadhye 2019), which
improved agreement with N-body simulations. More closely related
to this work, Wright et al. (2017) extended the hybrid COLA simula-
tion method to cases with massive neutrinos using second-order La-
grangian perturbation theory (2LPT) and Aviles & Banerjee (2020)
incorporated nonlinear neutrino effects in Lagrangian perturbation
theory up to third order (3LPT). On the numerical simulations side,
where higher-order LPT has been used to great effect to produce
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accurate initial conditions (ICs) for conventional simulations with-
out massive neutrinos (Scoccimarro 1998; Sirko 2005; Crocce et al.
2006), neutrino effects have not been included and higher-order
LPT is therefore rarely used for neutrino simulations, limiting their
accuracy (but see Brandbyge et al. 2008; Yeche et al. 2017). In
this work, we propose a novel scheme for generating nLLPT ICs for
neutrino simulations based on all-order recursive solutions in the
small-scale limit. We also generate ICs based on a full calculation
of scale-dependent neutrino effects in 2LPT, dealing with frame-
lagging terms following Aviles & Banerjee (2020), and find near
perfect agreement with our scheme in the final simulation product.
This demonstrates that neutrino effects can be implemented beyond
first order by working in the small-scale limit, paving the way for
accurate neutrino simulation ICs.

N-body simulations are used to solve for the nonlinear grav-
itational dynamics of matter on small scales, where perturbation
theory fails. Cosmological simulations with ICs based on LPT were
pioneered by Frenk et al. (1983); Klypin & Shandarin (1983) and
Efstathiou et al. (1985). Mixed dark matter simulations with sub-
electronvolt neutrinos were first carried out by Brandbyge et al.
(2008); Brandbyge & Hannestad (2009); Viel et al. (2010). We re-
fer the reader to Angulo & Hahn (2021) for a review of neutrino
simulation methods. As with perturbation theory, the accuracy of
modern surveys places stringent demands on simulations, popu-
larly expressed as a requirement for 1% accurate calculations of the
matter power spectrum (Schneider et al. 2016). A major source of
uncertainty concerns the interface between perturbation theory and
simulation, in the form of ICs, and associated transients (Scocci-
marro 1998). We may distinguish two major sources of uncertainty
related to the choice of ICs (Efstathiou et al. 1985; Michaux et al.
2021). The first arise from discrepancies between the ICs and the
actual nonlinear solution at the initial time. When the solution is cal-
culated perturbatively at order n, this uncertainty can be understood
as the truncation error introduced by neglecting terms of order n+ 1
and greater. The second source of uncertainty relates to discreteness
effects that build up over time as the continuous fluid equations are
solved by means of a discrete particle representation (Marcos et al.
2006; Garrison et al. 2016). There is a tension between these two, as
early starts minimize truncation errors but entail larger discreteness
errors, while late starts do the opposite. For example, the first-order
solution of Zel’Dovich (1970) has the largest possible truncation
error, driving practitioners to start simulations early when higher-
order corrections are small. However, such simulations manifest a
greater dependence on particle resolution due to discreteness er-
rors. While such errors can be corrected (Garrison et al. 2016), this
reasoning provides strong motivation for using higher-order ICs at
late times (Michaux et al. 2021).

Neutrinos complicate this picture in two ways. First, neutrinos
introduce an additional length scale into the problem. Due to their
large thermal velocities, neutrinos free stream out of potential wells,
otherwise stated in terms of a suppression of clustering on scales
smaller than a typical free-streaming length (Lesgourgues & Pastor
2006). This in turn causes a scale- and time-dependent suppres-
sion of dark matter and baryon clustering that must be accounted
for in the initial conditions. Zennaro et al. (2017) showed how to
incorporate such scale-dependence in a first order back-scaling pro-
cedure, but a consistent framework for higher-order ICs has thus
far been lacking. The second complication is that late-time observ-
ables are more strongly correlated with the initial conditions and
less determined by the internal structure of halos, when clustering
is suppressed on small scales. This means that simulations with
different neutrino masses are affected by errors to different degrees,

contaminating ratios such as the suppression of the matter power
spectrum. We will show that such ratios are more robust than abso-
lute statistics, but still depend on the choice of initial conditions on
small scales.

The paper is organized as follows. We begin by summarizing
our recipe for generating higher-order ICs for neutrino simulations
in section 2. The second part of the paper is concerned with a
derivation of the higher-order solutions necessary for ICs, starting
with the set-up in section 3, limiting solutions at all orders in section
4.1, and the full second-order solution in section 4.2. The final third
of the paper contains a systematic analysis of higher-order ICs in
section 5. Finally, we conclude in section 6. Throughout this paper,
we use a default neutrino mass sum of ) m, = 0.3 eV to showcase
our results, except where indicated otherwise.

2 N-BODY INITIAL CONDITIONS

We begin by outlining our approach for setting up for 3-fluid ICs
with cold dark matter (c), baryons (b), and neutrinos (v). Initially,
we deal with a single cold fluid, described in terms of the the mass-
weighted density contrast and velocity,

Ocb = Jfede + folb, (D
Veb = feVe + fo Vb, 2

where fo = Qc¢/(Qc +Qp) and f, = 1 — f.. In a final step, the
cold fluid is separated into two components with distinct transfer
functions. Our approach is based on a growing mode solution of
the LPT equations in the small-scale limit, motivated by the hier-
archy between the neutrino free-streaming scale and the nonlinear
scale, kg << kp, at the redshifts relevant for ICs. In section 5, we
confirm that this is an excellent approximation suited for precision
simulations. The recipe boils down to the following steps:

(i) Compute a back-scaled transfer function &y, (k)
(i) Compute particle displacements via Egs. (3—11)
(iii) Compute particle velocities via Egs. (12-14)
(iv) Perturb particle masses and velocities via Eqs. (15-19)

These steps can be performed using a modified version of the moNo-
FONIC code (Michaux et al. 2021), which we have made publicly
available!. We briefly discuss the steps in order and then deal with
possible extensions in section 2.5 and 2.6.

2.1 Transfer functions and back-scaling

In this paper, we follow the commonly used back-scaling approach.
This approach begins by choosing a pivot redshift, typically z = 0,
where the simulation should reproduce linear theory on the largest
scales. This is necessary because conventional N-body codes solve
Newtonian equations and therefore fail to capture the large-scale
general relativistic dynamics in which matter and radiation are cou-
pled through the Einstein-Boltzmann equations. We note that there
exist alternative solutions to this problem (Fidler et al. 2017; Brand-
byge et al. 2017; Fidler & Kleinjohann 2019; Tram et al. 2019;
Partmann et al. 2020) as well as fully relativistic N-body codes
(Adamek et al. 2017; Barrera-Hinojosa & Li 2020a,b), which can
avoid it altogether. In the back-scaling procedure, one uses a lin-
ear Einstein-Boltzmann code such as cLass (Lesgourgues 2011) or

1" Up-to-date links to the software referenced in this paper are maintained at
https://www.willemelbers.com/neutrino_ic_codes/.
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camB (Lewis & Challinor 2011) to calculate the density transfer
functions for each fluid species at zP™¥°t, which are then scaled back
to the starting redshift of the simulation using the exact linear dy-
namics of the Newtonian code. For ACDM without neutrinos, this
amounts to rescaling the dark matter transfer function by a constant
growth factor ratio D (z;)/D(zPo).

Adding massive neutrinos makes the linear solution scale-
dependent, precluding a simple rescaling factor. Nevertheless, the
same philosophy can be applied by solving the Newtonian dynamics
of an N-body code with massive neutrinos at linear order. Follow-
ing Zennaro et al. (2017), we do this using a first-order Newtonian
fluid approximation (Shoji & Komatsu 2010; Blas et al. 2014).
This back-scaling method for neutrino cosmologies was first im-
plemented in the rReps code. To streamline the procedure for the
end-user and to reduce the potential for human error, we built a
lightweight back-scaling library zwinpsTrooM that interfaces di-
rectly with cLass and the initial conditions generator MoNoFONIC.
The final result of these steps is a rescaled density transfer function
8ep (k) = Doy (k, 2i) /D ep (k, 2PV - 8 (K, ZP1VOY) for a cold dark
matter-baryon fluid (cb), where the growth factor ratio is computed
with zwiNDsTROOM and the transfer function with cLass.

2.2 Displacements

The displacement field, Yy = x — q, relates the particle position x
to the corresponding Lagrangian coordinate q. To determine ¥, we
first obtain the linear potential by solving

VoW (q) = 6 (). 3)

Unless indicated otherwise, V = V4. We observe that (,0(1) is not
the gravitational potential, which also includes a neutrino contri-
bution, but a notation that reflects the fact that we are solving for
the displacements of cb fluid particles. Our fast approximate 3LPT
(Buchert 1994; Bouchet et al. 1995; Melott et al. 1995) scheme for
the displacement field in the presence of massive neutrinos has the
simple form

p=y W@+ B+ e v oy @

where C,, are scale-independent factors that capture the absence of
neutrino perturbations in the small-scale limit, Cﬁl = C,/C;, and
|/1<") have the same form in terms of <p(1) as in ACDM. In the
notation of Michaux et al. (2021), these are given by

y D= v, y@ 2 39,0 )
! Ve,
1 10 N

with higher-order potentials given by

1
2 2 _ L[ ) (1) _ (1) (1)
Vie =5 [‘/’,ii i~ P ‘f",ij]’ ™
VZ(p(Sa) = det ‘p(ilj)’ 8)
1
2 3p) _ 1| @ (1) _ (2 (1)
Vi =3 [‘P,n‘ NIRRT *",ij]’ ©)

VIA® = v xvgl) (10)

R
where commas denote partial derivatives and we sum over repeated
indices. In section 4.1, we show that C}, can be expressed in terms
of the neutrino fraction, f, = Q, /Qn. The correction, as it turns
out, is small and approximately linear in f,:

2nfy

Cn31+m

an
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For a minimal neutrino mass sum of },m, = 0.06 eV, one finds
Cr—-1=5x 10~4. For our fiducial mass sum of > my, =0.3¢eV,
it is 0.3%. At >, m, = 1 eV, the effect is about one per cent. The
third-order correction Cj is larger, but since ¢(3) is suppressed by
another power of the growth factor, the overall impact is smaller.

2.3 Velocities

The velocity field is v¢, = dy/dr. Given a satisfactory scheme for
computing the displacement field, the time derivative can be eval-
vated numerically. This is our preferred method, since it requires
no additional approximations. However, a faster method that avoids
calculating higher order terms more than once is to use the asymp-
totic logarithmic growth rate

dlog Dy (k, a)

o= 1i 12
f kféo dloga 12
to convert displacements to velocities, setting

Vb = aH foo |9V + 202 ? (13)

+3(Cop 30 + CyCly 30 C2¢<3C))] .

By construction, this gives the correct particle velocities on small
scales. To recover also the correct behaviour on horizon scales, we
add a large-scale correction V((:g) given by

vy = aH V72V (6 = 5cp), (14)

where 6y, is the dimensionless energy flux transfer function com-
puted with cLass. We verified that the resulting simulated power
spectrum agrees with linear theory to better than 0.1% at the pivot
redshift of z = 0 on large scales. However, this approximation
neglects possible nonlinear effects of scale-dependent growth on
particle velocities. Another alternative is to rescale the velocities by
the scale-dependent growth rate (Zennaro et al. 2017), which faces
a similar problem beyond linear order.

2.4 Additional steps for 3-fluid ICs

The steps above are sufficient for simulations with neutrinos and a
single cold fluid. To separate this cold fluid into baryon and CDM
components with distinct transfer functions, we follow the approach
of Hahn et al. (2021). In short, the component densities are related
to the mass-weighted average viaZ

Gc =0ch — fb5b0v (15)
b = Ocb + feObes (16)

where the difference variable, dp. = dp — ¢, iS constant at first
order. The velocity difference too is conserved and vanishes at all
orders: vp. = vy — Ve = 0. These results, derived for ACDM without
massive neutrinos (Rampf et al. 2021), carry over to the neutrino
case, essentially due to the fact that the neutrino contribution cancels
in the difference equations (Appendix A). The transfer function
difference, 6pc (k) = 6y (k) — 8¢ (k), is computed with cLass at the
pivot redshift and, since it is conserved, is not scaled back.

After assigning displacements and velocities to both particle

2 We remind the reader that f = Q;/Qc for A € {c,b} even as f, =
Q,/Qm =Q,/(Qcp+Q,) = 1 — fip. Furthermore, Spc # Scp and Vpe # Vep.



4 Elbers et al.

species using the mass-weighted average fields, the density differ-
ence is implemented by setting the masses to

ma(q) =ma[l+81(q) = deb(q)], a7

with 771, the mean particle mass for type A € {c, b}. Perturbing the
masses, rather than the displacements, was found by Hahn et al.
(2021) to limit discreteness errors.

By construction, Newtonian simulations with initial conditions
set up using the above procedure, reproduce the expected evolution
of two cold fluids with a shared velocity field and a relative density
contrast that is approximately conserved. However, like the large-
scale velocity correction (14), a further modification is needed to
bring the dynamics back into agreement with cLAss at first order:

Deo 2PV 1/2 )
( Deo(zi) ) B

Do ( Zpivot)
Do (zi)
where D« (z;) is the small-scale growth factor at the starting redshift
zi and O = —f,0pc and Op = f.O. The difference, Oy (k) =
Oy (k) — 0. (k), of the dimensionless energy flux transfer functions

is computed with cLass at the pivot redshift.

ma(q) — ma(q) + 21y 0,(q), (18)

1/2
m(q)ew(q)mew( ) V2Ve. (g, (19

2.5 Neutrino particles

Massive neutrinos can be included in N-body codes using a variety
of methods. The most common approach is to solve for the neutrino
perturbations self-consistently by including them as a separate N-
body particle species (Brandbyge et al. 2008; Viel et al. 2010).
Initial conditions are then also needed for these neutrino particles.
Capturing the full neutrino phase-space distribution is non-trivial
even in linear theory and it is therefore not sufficient to compute only
the first two moments, as is done for baryons and CDM. Accurate
neutrino particle initial conditions can be generated by integrating
geodesics from high redshift (Ma & Bertschinger 1994; Adamek
et al. 2017), where the perturbed phase-space distribution can be
expressed analytically (Ma & Bertschinger 1995), but care must
be taken that the equations of motion remain valid in the ultra-
relativistic régime (Elbers, in prep.). This procedure can be carried
out efficiently using our FastDF code. We stress that the focus of
this paper is on dark matter and baryon ICs and the results apply
regardless of whether the neutrino implementation uses particles.

2.6 Scale-dependent effects

Finally, we verified the approximations above by performing a full
calculation of scale-dependent effects on the second-order displace-
ment field. This is done by replacing (7) with a convolution of two
copies of the first-order potential go(]) (k), modulated by kernels
Df) (ky,kp) and Dl(gz) (ki,kp), computed in section 4.2. This nu-
merical calculation is expensive, but we will show in section 5 that
simulations with ICs based on the full calculation agree extremely
well with those based on the approximate scheme described above.
The reason for this is the hierarchy of scales, kgg < kyj, which
implies that higher-order corrections are important only on scales
where neutrinos do not cluster, at least at redshifts that are relevant
for ICs. Since the overall impact of the third-order correction factor,
C3, is smaller than that of C; and given the excellent agreement be-
tween the full and approximate solutions at second order, we expect
the difference to be even smaller at third order. At the same time,

the triple convolutions required for the third-order solution would
be prohibitively expensive and would require a different approach.
For this reason, we only consider 2LPT in section 4.2.

3 THEORETICAL SET-UP

We now proceed with the set-up of a 3-fluid model, which is solved
in section 4. We consider three fluids indexed by A € {c,b, v} for
cold dark matter, baryons, and neutrinos. Throughout, we will treat
baryons like dark matter particles and denote the mass-weighted
CDM-baryon fluid by subscript cb. Let p(x) be the density, u, (x)
the peculiar velocity flow, and o) (x) the stress tensor. We also write
61 =pa/pa— 1 for the density contrast.

3.1 Euler equations

Taking moments of the Boltzmann equation yields the Euler fluid
equations (Bernardeau et al. 2002)

1
Oruy +uy - Vxuy = —aHuy — Vx® — —Vx(p02), (20)
pa

070+ Vx - [(1+6)u,] =0, for A€ {c,b,v}, 21

where 7 is conformal time, H = dra/a” is the Hubble constant
(given explicitly below) and ® the Newtonian potential. While the
neutrino distribution function and its higher-order moments are
complicated, the stress tensor can be neglected for the cold dark
matter and baryon fluids on the scales of interest, o = o}, =
0. Taking the mass-weighted average of the cold dark matter and
baryon equations, we obtain at all orders (see Appendix A)

Oruch +ucp - Vxep = —aHug, — Vx®, (22)
076ch + Vx - [(1 +6cp)ucp] = 0. (23)
The potential is given by Poisson’s equation,

3 QmH?
VZO() = 5 ——0m(¥). (24)

in terms of the total matter density, om = fehoch + fv 0y, Which in-

cludes a massive neutrino contribution. To complete the system, we

assume the linear response approximation for the neutrino density:
6lin (k)

6y(k) = rm—kfscb(k)v (25)
Oy (k)

where 62“(/() refers to the density transfer function of A € {v, cb}

computed in relativistic linear perturbation theory with cLass. The

total matter density contrast is then

om(k) = [1+a(k)] fepdep (k). (26)

where we have introduced the convenient notation o =
fvdgn /( fcbdlcil;‘) for the linear theory ratio. The linear response ap-
proximation is accurate while neutrinos and dark matter remain in
phase, which is a reasonable assumption at the early times consid-
ered here (see below). Inserting this in (24) yields

~K20K) = 2 [1+a(k)] 60y (), @)

where By = %(1 - fy)QmHg is written in terms of present-day
values. We look for a growing solution of the form 6. (K, 7) =
D¢y (k, T)dcp(k, 79). Linearising (22-24), we find

B
02Dy +aHdz Doy = —2 (1 + @) Dep. (28)
a
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In contrast to the ACDM case, this equation is scale-dependent
due to the appearance of a(k). To proceed, we will take the limit
k — oo. Since limg_, o a(k) = 0, we simply obtain

B
02D +aH0:Doo = Doy (k > ). 29)
a

We denote the solution of (29) by D« to indicate that this is the
small-scale solution. At this point, an equally valid description could
be given in the large-scale limit or indeed for an arbitrary pivot
scale. We deliberately choose the small-scale limit for two reasons.
First, most simulations are not large enough to realize the large-
scale limit. Second, we are interested in nonlinear corrections to the
initial conditions which are negligible on large scales.

3.2 Asymptotic form

We can find an analytic3 solution to (29) if the contribution of
radiation to the Hubble rate is neglected. We will return to this
point further below. For now, let us assume that

Qcp +Q
H2 :HS QA+% (30)
a

In this case, the growing mode can be expressed in terms of the
hypergeometric function as (see Appendix B)

Q47 243 dp+T
Dm(a):a”\/1+Aa32F1(p+ P2 T Ad?), (31

6 6 6 °
with A = QA /Qn and p = /1 +24(1 - f,,)/4 — 1/4. This is nor-
malized such that lim,_,g Do /aP = 1. Taking f,, = 0, we recover

the ACDM solution with p = 1 (Rampf et al. 2015). Taking instead
A — 0, we recover the solution during matter domination (MD)

Doo(a) —aP = a\/1+24(1—f‘,)/4—1/4, (32)

which agrees with Bond et al. (1980).

For ACDM without massive neutrinos, accurate nonlinear pre-
dictions can be made by substituting the growth factor for the scale
factor, a — D, in solutions obtained for the Einstein-de Sitter
model. This is facilitated by using the growth factor as time vari-
able (e.g. Matsubara 2015; Rampf et al. 2015, 2021). Here, we will
pursue a similar strategy and make a change of time variables to
D . Defining the quantity

2By ( Do \°
gm—~£( ) 33)

"3 a \0:Deo

and the new velocity variable v, = dp_X, the fluid equations can
be rewritten as

380
0Dy Veb * Veb * VxVeb = _%(Vcb +Vxo), 34
Op.,Ocb + Vx - [(1+5ep)vep] =0, (35)
0
Vig= 5o s (1+a), (36)

where the rescaled potential ¢ = a®/(BgDw) is given in terms of
a convolution, denoted by *, of §.p and the linear response (1 + ).
Although written in terms of D, this is completely general.
Given suitable boundary conditions, Eqs. (34-36) are analytic
at Do = 0. In particular, we require that 6in‘}i = 52{)‘ = 0. This agrees
with our use of growing mode solutions for particle displacements,

3 A function £ is analytic at x if the Taylor series of f around x converges
to f in a neighbourhood of x.
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(a)

approx
4

(a) H(a)/H™P(a) 6y (a)/s

approx

(o]

gola)/g

F il L1

0.95 Ll
1072 107! 10°

Scale factor time a

Figure 1. Accuracy of the linear response approximation (25) evaluated at
k = 0.60 Mpc™!, compared to a reference simulation (top), of neglecting
radiation in (30) for the Hubble rate (middle), and of (37) for the constant
matter-dominated value for g«. The vertical dotted line indicates the fiducial
starting redshift of z; = 31. The neutrino mass sum is ), m, = 0.3 eV and
the shaded region is 10% (top) and 1% (middle & bottom).

q — q+y, where the unperturbed particle grid represents a uniform
density field. The scaling, H? « a=3, of the Hubble rate at early
times ensures that such mass transport problems are well-posed
(Brenier et al. 2003; Rampf et al. 2015). This scaling does not hold
in the presence of radiation, a problem that already occurs in ACDM
on account of the cosmic microwave background radiation, but is
certainly made worse by the inclusion of massive neutrinos, which
scale like radiation in the relativistic régime. Therefore, we need to
start the integration at a time when the relativistic contribution of
neutrinos to the Hubble expansion can be neglected. Note that we
make this assumption to ensure a consistent mathematical frame-
work for the higher-order LPT solutions. However, it is not needed
for the linear transfer functions, the back-scaling procedure or in the
N-body code itself. In each of those cases, we do take the relativistic
neutrino contribution into account.

Before proceeding, let us give the following convenient expres-
sion for ge in the limit A — 0:

~1j2 _a*?HdlogDe _

)

1 1424(1-f) -1

dloga 4 NS

= (37
580

Both numerator and denominator scale approximately as (1—f;,) 2,
The numerator is simply the exponent of the growing mode in
(32), while the dependence of the denominator can be traced to
the appearance of B on the right-hand side of (29). The resulting
smallness of goo — 1 explains why neutrino corrections at nth order
are small relative to D7, : the lack of neutrino clustering is largely
compensated by slower growth of the linear solution. In the next
section, we will validate the assumptions made up to this point.
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3.3 Validity of assumptions

Central to the approach of section 4 is the linear response approxi-
mation (25) for the nonlinear neutrino density, &, (k). This approx-
imation is very accurate at early times, but underestimates neutrino
clustering on small scales and neglects the phase shift between neu-
trinos and dark matter that builds up at late times (see Fig. 6 in
Elbers et al. 2021). The top panel of Fig. 1 shows the nonlinear
neutrino density contrast, computed from a simulation with neu-
trino particles, relative to the linear neutrino response evaluated
at k = 0.60 Mpc_l. The neutrino mass is Y,m, = 0.3 eV. The
figure suggests that the approximation is valid at this scale up to
z =~ 1.5, when perturbation theory has presumably already broken
down. Hence, approximation (25) is well-suited for our application
at much higher redshifts.

A second approximation is that we neglect the contribution
of the relativistic tail of the neutrino distribution to the Hubble
rate in (30). We reiterate that this approximation is only made for
the calculation of the higher-order kernels and not in any of the
calculations at first order. The middle panel of Fig. 1 shows that this
approximation is accurate to better than 1% for a > 0.01, for our
default neutrino mass of ), m, = 0.3 eV. In particular, at the fiducial
starting redshift of z; = 31, the error is 0.3%. We are helped in this
regard by our preference for late starts.

Finally, we assume that g« is constant in section 4.1. The bot-
tom panel of Fig. 1 shows that this is an excellent approximation,
except at late times during A-domination. The figure suggests that
there is a window where all assumptions are valid, potentially al-
lowing us to push to even later starts, with the breakdown of LPT
likely being the limiting factor.

4 LAGRANGIAN APPROACH

In the Lagrangian approach to gravitational instability (Zel’Dovich
1970; Buchert 1989; Moutarde et al. 1991; Bouchet et al. 1992;
Gramann 1993; Buchert & Ehlers 1993; Bouchet et al. 1995), the
objective is to describe fluid particle trajectories

x(q) = q+¥(q), (38)

in terms of a displacement field . We use the Helmholtz decom-
position, writing the Laplacian of a smooth vector field as

V2 =V (V-4h) -V x(VxW). (39)
What remains is to solve for the longitudinal and transverse deriva-
tives. The displacement is related to the Eulerian density, d¢p,
through the Monge-Ampere equation

Ocp(X) = (40)

— 1,
J(q)
where J(q) is the determinant of the Jacobian of the coordinate
transformation, J;; = dx;/dq j, given by

1
J=detJij=1+yii+ 3 [Wiiwj,j =i )| +detyij.  (41)

Let (0/0Dwo), = (0p, + Veb - Vx) be the Lagrangian derivative.
The Lagrangian form of the Euler equation (34) can be written as

DeoX = Do Vxo, (42)

where we used v, = (0%/0 D)1, and introduced the linear operator
d \* 3gw [ O

Doo = + . 43

(7o), 20 (e ), “
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Figure 2. Correction to the ACDM prediction of D = (3/7)D? for the
second-order growth factor, according to the approximate model of Eq. (55),
for ), m, = 0.3 eV at z = 31 (dashed line). The colours represent a histogram
of the full numerical solution, Dg) (ky, ky), evaluated on a 6D Fourier
space lattice with physical dimension L = 800 Mpc (i.e. Ak = 7.85 x 1073
Mpc™1), projected onto the k = || k; + ks ||-axis and normalized per k-bin.
For the large majority of configurations, the system attains the approximate
value. The shaded region indicates the range of scales for which the power
spectrum of k .¢(2) is at least 0.01% of that of k -w(l).

Using (36) and taking the divergence and curl of (42), we find that
the evolution of the displacement is governed by

3800
Vy - Deox(q) = —% [6ep * (1+a)] (%), (44)

(o)

Vx X Doox(q) = 0. (45)
To facilitate a fully Lagrangian description, we define the frame-
lagging terms (Aviles & Cervantes-Cota 2017; Wright et al. 2017)
F(q) = [(1/7=1) xa] (@) = [6cp * @] (x). (46)

Frame-lagging terms arise from mapping the Eulerian neutrino re-
sponse to Lagrangian coordinates. We give explicit expressions up
to second order in Appendix C. Transforming the derivatives on the
left-hand side of (44) and (45) using Oy, = (aqj/c')xi)ﬁqj = Jl._jl g,
and using the Monge-Ampere equation (40), we write these equa-
tions in Lagrangian coordinates as

} 3800
Jileoow[,jzzg—go[(1—1/])*(]+a)+F], 7)

€ijkJ7) Dotk 1 = 0. 48)

It will be the task in the following sections to find perturbative
solutions for . We perform an expansion in displacements, writing

y=> ", (49)
n=1

where (" is of order [lﬁ(])]n.

4.1 Limiting solutions

Having set up the Lagrangian equations for the neutrino-cb fluid
model, we are now in a position to look for approximate solutions.
The aim is to find expressions for the displacement on large and
small scales. In the small-scale limit, neutrinos do not cluster and
only contribute to the background expansion as encoded by geo.
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Meanwhile, in the large-scale limit, neutrinos cluster like cold dark
matter and one recovers behaviour analogous to ACDM. In both
cases, we can find simple solutions in the form of LPT recursion re-
lations (Rampf 2012; Zheligovsky & Frisch 2014; Matsubara 2015;
Rampf et al. 2015). These limiting solutions will be used as initial
conditions for the numerical integration of the general problem and
provide the basis for the recipe of section 2.

In this section, we assume that go, = constant, which is exact
during matter domination (Eq. (37)), and a very good approximation
in general (Fig. 1). On large scales, we also have 1 + (k) = 1 +
fv/fop* and on small scales 1 + @ (k) = 1. Hence, if all modes
involved in the problem are either large or small, we can approximate
the convolution with the neutrino response as multiplication by a
constant 8 = 1 + a(k). In such cases, the frame-lagging terms also
vanish, as will be confirmed in section 4.2. Given these assumptions,
(47) reduces to

_ ?)ﬁgOo
1
Jij Deopi,j = D

(50)

Using the identities JJi_jl (1/2)€jkp€igrdigtpr and J =
(1/6)€ijkepgrdipdjqJir» we rewrite (50) and (48) as

o0 3 (o]
€ jk€pgrdqjlip | Do — %] Jier + ﬁg =0, (51
flquqkﬂoolﬂk,l =0. (52)

Hence, using J;j = 6;; + ;,j and substituting the expansion (49),
we obtain equations for the longitudinal and transverse parts at order
n in terms of perturbations of orders m| + my = n (for n > 2) and
my +mp+m3 =n(forn > 3):

[Doo - 3ﬁg°°] vy =

2D 2
= > ejkeipgt™ | Do - iﬁ;; ]w(”’z) (53)
mi+my=n
- fijkqur%lﬂff,‘)t//}’,? [Doo fg";]w(m‘),
my+na+ms=n
DV xyW = 3 vy < D vy, (54)

mp+my=n

The first-order equations separate. The longitudinal equation (53)
has the particular time-dependent solution

DW =DL with g=1v4+3g00(88+3800 —4) = 3800 + 1.

while the transverse equation (54) has constant and decaying solu-
tions. Identifying the fastest growing solutions order by order, we
find that cﬁ(") oc D n particular, we find that the fastest growing
solution at second order grows as

D@ _ 3geof
D% 4929 1) +380(29 - )

Reinserting 8 = 1 + a(k), we obtain a useful approximation of
the magnitude of neutrino effects on the second-order coefficient,
relative to the ACDM value of 3/7. This is shown by the dashed
line in Fig. 2 for a model with }, m, = 0.3 eV at z = 31. We stress
that this approximation neglects the non-trivial coupling with the

(55)

4 This is not strictly true, since 8, > ¢, on the largest scales due to the
relativistic tail of the neutrino distribution. We ignore this small effect in the
current section and in Fig. 2, but take it into account in section 4.2.
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neutrino response in the general case. As we will see in the next
section, the second-order solution can be described in full by two

kernels, Di‘z) (k1,kp) and Dg) (k1. kp). For most configurations on
the 6D Fourier space lattice that we use to generate N-body ICs, both
k1 and k, are large and the result is close to the estimate of Eq. (55).
However, for cases with one mode large and one mode small or for
squeezed configurations with k = | k| + k; | < k| = ko, the value
may depart from this estimate, as shown by the histogram in Fig. 2.
Nevertheless, the figure demonstrates that the large- and small-
scale limits provide reasonable bounds on the effect at intermediate
scales. Overall, the magnitude of the effect is 0(10_3), in line
with the estimate given in section 2.2 for this mass. The figure
also demonstrates that the ACDM value of 3/7 is only reached for
k<1073 Mpc~!, while the second-order potential is important for
k > 107! Mpc~!, reflecting the hierarchy between the neutrino free-
streaming scale and the nonlinear scale, k¢ < kyy, that motivates
the approach of section 2.

Using ) o« D' we derive recursion relations for the fastest
growing solution at order n > 2:

2
Vo= l[ _ dmymag ]
my Gen 2 2nq(ng — 1) + 38w (nq — B)
X eljkelpql/’;”:)w(nn)
_ [ _ 4(mymy + myms +M3M1)q2] 0
T =n 2nq(nq = 1) + 380 (ng — B)
x fijkqur w(ml)w(mz)w(mz),
1my—m
Vx g = my Mg () gy, (m)
Xy D0 v x vy, (57)

mp+my=n

For the purposes of higher-order ICs, we are primarily interested
in deriving corrections to the ACDM coeflicients in the small-scale
limit with 8 = ¢ = 1. Reading off coefficients from (56), we find
that these can be conveniently expressed in terms of
2n+3
Cp= Zt s (58)
2n+ 38
Proceeding as in Appendix D, we obtain the 3LPT form given
in section 2.2. Combining Egs. (58) and (37) yields an accurate
approximation of Cy, in terms of f,:
8(1- f,)(2n+3) 2fvn

C":n(s—1)2+(s2—1) =455, 5 (59)

with § = /1 +24(1 - f,,). For n = 2, the above expression agrees
with that given by Wright et al. (2017). The next section is dedicated
to relaxing the assumptions on g, and a(k), finding the general
solution at second order.

4.2 General solution

For the general solution, we need to deal with the frame-lagging
terms F(q). Here, we will follow the approach of Aviles & Banerjee
(2020). We are interested in solutions at second order. The transverse
equation (48) only has non-trivial solutions for n > 3. Therefore, we
concentrate on the longitudinal part. We repeat (47) for convenience:

3g00

I Dootrij = 252 [(1 = 1/0) « (1 + @) + F. (60)

00

Using (41) and Jl._jl = 2ol =J)"];ij, we can write this up to
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second order in the displacement:

3
Dooti,i = Wi, j Dootlj i + g—ozowi,i * (1 +a)

2Dg,
3g00 1 3g 1)
oo Ll 2

- EE [iivjj+vijvji]*(1+a)+ EF( ),

where the second-order frame-lagging terms, F @ are given in
Appendix C. At first order, the displacement admits a growing
solution |//(1) o« DU with a growth factor that satisfies
DD = =2 (1+a)D M. (62)
OO
This is simply a reformulation of the Eulerian equation for the
first-order growth factor (28). Using the expansion (49) in (61) and
collecting second-order terms then yields

d/(Z)

(o9

3800 1 63)

2D2 2
In Fourier space, each of the quadratic terms in (63), including the
second-order frame-lagging term, is a convolution of derivatives of
w(l) (ky) and x//(l) (k). Expressing the displacements in terms of
potentials as

w<1>¢,<1> w<1>¢,<1>]*(1+0)+ . FO.

D = v, y? = v, (64)

and identifying terms, we thus obtain

1 1
D=3 [
14 2 Juy ko (k)2 DlD

2 2
x | DY (k1 ko) k243 — DS (k1. ko)k, |,

oW (ke (ky)
(65)

where /kl,k2 = [ dkydky(27) 766 (k; +ky —k) and k12 = k; -ky

and D; = DU (k;) fori = 1,2. Notice the similarity of this equation
with Eq. (7). The difference is that the two terms now have distinct
scale- and time—dependent coeflicients satisfying

DD = 22 (1+a (k)DY + 22 (1+A)D 1Dy, (66)
@ _ 3goe )
DD = (1+a(k) DY +2D (1+B)D Dy, (67)

oo 00

where the functions A and B are given by

Ak, Ky ko) = a(k) + a(k) —za(kz) N a (k) —za(kl) . (68)
ky k3
B(k,ky,kp) = a(ky) +a(ky) — a(k), (69)

for k = | k| + kp|. The terms in square brackets correspond to the
frame-lagging terms. In the small-scale limit with k, k1, ko > kg,
we have A = B = 0. Hence, Df) = Dl(gz) and (65) factorizes as
in Eq. (7). Similarly, in the large-scale limit with &, k1, ky < kg,
we obtain again the approximate form described in section 4.1 with
A = B = f,/ fep- In both limits, the frame-lagging terms drop out,
as anticipated. Intermediate configurations will deviate from the
asymptotic solutions, as was already discussed in section 4.1 and
shown in Fig. 2.

For the numerical solution, we begin the integration at a time
when the non-relativistic neutrino fraction is 50%. For the fiducial
neutrino mass, ), m, = 0.3 eV, this corresponds to z = 187. We
integrate Eqs. (62) for the first-order growth factor and (66-67) for

Power spectrum
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Figure 3. Impact of approximation schemes for the second-order potential
on the CDM & baryon power spectrum. The reference run used initial
conditions based on a numerical calculation of the scale-dependent 2LPT
kernels, Df) (ki,ky) and Dg) (K1, kp). In the asymptotic approximation
(black), we use Egs. (4) and (13), but truncate third-order terms. In the
ACDM approximation (red), we additionally set C, = 1.

Table 1. Description of the gravitational parameters used by swirt for the
Ny, = 6003 (low-res) and Ngp, = 12003 (high-res) simulations.

Parameter Low-res High-res
mesh_side_length 512 1024

MAC adaptive adaptive
epsilon_fmm 0.001 0.001

eta 0.025 0.025
theta_cr 0.7 0.7
use_tree_below_softening 1 1
comoving_DM_softening 0.0533333 0.0266667
max_physical_DM_softening  0.0533333 0.0266667
comoving_nu_softening 0.0533333 0.0266667
max_physical_nu_softening  0.0533333 0.0266667

the second-order kernels, using the approximate model of Eq. (55)
as initial conditions. The results, projected onto the k-axis, are
shown in Fig. 2. When generating 2LPT particle initial conditions,
we begin by generating a realisation of the back-scaled first-order
potential, ¢ 1), We then perform the convolution integral of Eq. (65)
explicitly, interpolating from tables of Dfi)lg(k, ki, k). To ensure
completion in a reasonable time frame, we impose cut-offs at k| <
keut and ky < keyr. We performed convergence tests to ensure that
the results are independent of the cut-off scale, finding that a cut-
off at keye = 1 Mpc’1 was more than adequate for the resolutions
considered in this paper.
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Table 2. Description of the simulations. The listed particle mass, m,, refers
to the cb particles. The neutrino fraction is listed as f;, = Q, /(Qcp + Q).
All simulations used the same random phases in an L = 800 Mpc cube.

1Cs Zi Neb mp [MG] Ny 2. my N

ZA 127 1200° 1.14x10™ 600° 0.30eV  0.023
ZA 63 12000 1.14x 10  600° 0.30ev  0.023
ZA 31 12000 1.14x 109  600° 0.30ev  0.023
2LPT 31 12000 1.14x10'9  600° 0.30eV  0.023
3LPT 31 12000 1.14x10'9  600° 0.30eV  0.023
2LPT 31 12000 1.17x10™ 600> 0.00eV 0.0

2LPT 31 12000 1.14x 109 600> 0.30eV  0.023
2LPT 127 12000  1.17x1019 600> 0.00eVv 0.0

2LPT 127 12000 1.14x10'9 600° 0.30ev  0.023
ZA 31 600°  9.34x10"  600° 0.00ev 0.0

ZA 31 600°  9.23x 100  600° 0.15ev  0.011
ZA 31 600>  9.12x 10  600° 0.30eV  0.023
2LPT 31 600>  9.24% 100  600° 0.00eV 0.0

2LPT 31 600>  9.23%x 100  600®° 0.15¢V  0.011
2LPT 31 600°  9.12x1010 6003 0.15¢Vv  0.011
3LPT 31 600>  9.34x10'0  600° 0.00eV 0.0

3LPT 31 600°  9.23x1010 600> 0.15¢Vv  0.011
3LPT 31 600°  9.12x 100  600° 0.30eV  0.023
2LPT 63 600°  9.24x10"  600° 0.00eVv 0.0

2LPT 63 600°  9.23x 100  600° 0.15ev  0.011
2LPT 63 600>  9.12x 100  600° 0.15eVv  0.011
2LPT 127  600° 9.24x109 600> 0.00eV 0.0

2LPT 127 600 9.23x1010 6003 0.15e¢v  0.011
2LPT 127 600  9.12x10'0 6003 0.15¢Vv  0.011

5 RESULTS

We will now discuss the power spectra, bispectra, and halo mass
functions of massive neutrino simulations with different ICs. We
introduce our simulation suite in section 5.1. We then consider the
impact of different approximation schemes for the second-order ker-
nels in section 5.2 and follow it up with a comparison of Zel’dovich
(ZA), 2LPT, and 3LPT ICs at various starting redshifts in section
5.3. Finally, we consider the impact of ICs on the suppression of the
power spectrum as a function of neutrino mass in section 5.4.

5.1 Simulations

We use the cosmological hydrodynamics code swirrt (Schaller et al.
2016, 2018), which uses task-based parallelism, asynchronous com-
munication, fast neighbour finding, and vectorised operations to
achieve significant speed-ups. The code uses the Fast Multipole
Method (FMM) for short-range gravitational forces and the Particle
Mesh method for long-range forces. Neutrinos are modelled as a
separate particle species. We employ the ¢ f method to suppress the
effects of shot noise (Elbers et al. 2021) and generate neutrino par-
ticle initial conditions by integrating geodesics from high redshift
using our FAsTDF code. Additionally, we use fixed initial conditions
to limit cosmic variance (Angulo & Pontzen 2016). Apart from the
neutrino mass, we use cosmological parameters based primarily
on Year 3 results from the Dark Energy Survey (Porredon et al.
2021) and Planck 2018 (Aghanim et al. 2018). Our choice of pa-
rameters is (/, Qm, Qp, As, ns) = (0.681,0.306,0.0486, 2.09937 x
10_9,0.967), with different choices for the neutrino density Q,, .
The parameters used by the gravity solver are listed in table 1 and
an overview of the simulations is given in table 2.

There is a subtle point regarding comparisons between simula-
tions with and without massive neutrinos. Codes like swirtT employ
a multipole acceptance criterion to determine when the multipole
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approximation is sufficiently accurate to be used without further
refinement. The adaptive criterion used for the runs in this paper is
based on error analysis of forces on test particles. This means that
the accuracy of the N-body calculation depends on the number of
particles contained in any given volume. When comparing two runs
with equal numbers of dark matter particles, one with neutrinos
and the other without, all other things being equal, forces will be
calculated more accurately in the run with neutrinos. To account for
this difference, we included an equal number of massless ‘spectator’
neutrino particles in the f,, = 0 runs, with velocities corresponding
tom, = 0.05 eV neutrinos. These particles contribute no forces and
only affect the N-body simulation through the multipole acceptance
criterion, ensuring that the accuracy of the massless runs is compa-
rable to that of the massive neutrino runs. Such massless runs are
considered in section 5.4.

5.2 Validation of approximate treatment

To validate our approach, we compare three different implementa-
tions of 2LPT, based on the following models:

(i) The asymptotic model of section 2
(ii) A model with ACDM coeflicients
(iii) A reference model with scale-dependent effects

The first order displacements and velocities are identical in each of
the approaches, obtained from the back-scaled linear power spec-
trum at z = 0. In the asymptotic scheme, we use Eqs. (4) and (13),
but truncate the 3LPT terms. In the ACDM approximation, we addi-
tionally set C, = 1, which corresponds to neglecting neutrino effects
at second order. Finally, we compare these two approximate meth-
ods with a reference run that relied on a numerical calculation of
the scale-dependent 2LPT kernels, DI(AZ) (ky,kp) and Dg) (ky, ko).
With respect to Fig. 2, the asymptotic approximation corresponds
to using the small-scale limit, the ACDM approximation corre-
sponds to the large-scale limit, and the reference run corresponds
to the underlying histogram. We use simulations with side length
L = 800 Mpc and N, = 12003 particles.

Fig. 3 shows the impact of these approximations on the power
spectrum of the evolved CDM & baryon density field. The differ-
ences are most evident at z = 3 (bottom panel). On the largest
scales, k < 0.05 Mpc’l, nonlinear corrections are small and all
simulations agree to machine precision. For k > 0.05 Mpc™!, the
ACDM simulation systematically underestimates clustering with a
maximum error of 0.04% at k = 4 Mpc~!. For the asymptotic run,
the error is two orders of magnitude smaller over the same scales.
Between z = 31 and z = 3, the evolution is virtually identical in the
asymptotic and reference runs, but we begin to see some noise in
the ratio on the smallest scales at z = 1 (middle panel). These per-
turbations continue to grow until z = 0 (top panel), where we find a
scatter of 2x10~* for k > 1 Mpc ™! in both the asymptotic/reference
and ACDM/reference ratios. It is hard to attribute this noise to any
particular run as the power spectrum on these scales is increasingly
determined by the internal structure of poorly resolved halos. On
larger scales, k < 1 Mpc™!, the asymptotic run performs extremely
well with errors below 107>, while the systematic deficit in the
ACDM run persists.

These results demonstrate that, at second order, the effect of
the suppressed neutrino perturbations can be absorbed into a scale-
independent factor C, and that further scale-dependent neutrino
effects are negligible as far as initial conditions are concerned. We
expect that this continues to hold for third-order corrections, which
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Figure 4. Impact of starting time and LPT order on the CDM & baryon
power spectrum. The reference simulation used 3LPT and both it and the
2LPT simulation were started at z; = 31. The shaded area is 1%.

are confined to even smaller scales. Including the correction fac-
tor C; is clearly superior to simply using the ACDM coeflicient.
However, we also observe that this higher-order neutrino effect is
below 0.1%, and therefore beyond the sensitivity of current experi-
ments. Hence, we conclude that for most purposes both the ACDM
approximation and the asymptotic approximation are justified.

5.3 Choice of LPT order and starting time

We are now in a position to study the effects of LPT order and
starting time on massive neutrino simulations, using the asymptotic
approximation. Fig. 4 shows the late-time power spectrum for sim-
ulations with L = 800 Mpc and Ny, = 12003 particles, comparing
in the first instance Zel’dovich (solid red) and 2LPT (solid black)
with 3LPT (dotted gray) as a baseline. All three runs were started
at z; = 31. The most striking observation is that the differences are
much larger than those shown in Fig. 3. This means that using higher-
order LPT in some fashion is more important than getting the details
right. Next, we find per cent agreement between 2LPT and 3LPT
over the entire range of scales probed for z < 1 and approximately a
1% error at z = 3 for k > 2 Mpc~!. We also find that the Zel’dovich
approximation performs very poorly with errors of (4, 7, 15)% for
k>1 Mpc‘1 at z = (0, 1, 3). This well-known fact (Crocce et al.
2006) has motivated practitioners to start Zel’dovich simulations
at higher redshifts, when truncation errors are smaller. We demon-
strate this with Zel’dovich runs started at z; = 63 (dashed, red)
and z; = 127 (dotted, red). While the agreement with the higher-
order runs improves, we still find per cent agreement only up to
k=04 Mpc_l. Moreover, starting earlier introduces inaccuracies
of a different sort. To see this, we repeat the exercise at a lower
resolution with Ngp, = 6003 particles. The resulting power spectra

at z = 0 are shown in Fig. 5, with Zel’dovich runs compared against
3LPT in the top panel. We observe that for runs started at z; = 31
(red), the error is almost independent of resolution. However, for
earlier starts at z = 63 (black) and z = 127 (blue), the lower resolu-
tion runs increasingly underestimate the power spectrum on small
scales. This shows that while truncation errors decrease, resolu-
tion effects increase as simulations are started earlier. The pattern
reverses for 2LPT (bottom panel), with earlier starts performing
worse than later starts. This can easily be explained by the fact that
truncation errors are much smaller for 2LPT, such that the effect of
increasing discreteness errors dominates. We confirm the finding
of Michaux et al. (2021) that the size of discreteness errors is in-
dependent of LPT order. This demonstrates that, at fixed resolution
and LPT order, starting earlier does not guarantee convergence onto
the higher-order solution. As was the case for truncation errors,
discreteness errors are much larger at z = 1, 3 (not shown).

We also consider three-point statistics, which are sensitive to
transients from initial conditions (Crocce et al. 2006) and an in-
teresting probe of neutrino physics (Chiang et al. 2018; Ruggeri
et al. 2018; Hahn et al. 2020). For the equilateral bispectrum,
B(k) = B(ky,kp,k3) with k = k1 = kp = k3, shown in Fig. 6
at late times, the same pattern is broadly repeated as for the power
spectrum. However, errors are approximately twice as large as for
the power spectrum. In detail, we again find per cent agreement be-
tween 2LPT and 3LPT for z < 1 with larger errors on small scales at
z = 3. For the Zel’dovich runs, we find significant errors compared
to 3LPT, even when starting at z = 127, with per cent agreement
only up to k = 0.1 Mpc~! at z = 0, and not even there for z > 1.

Finally, we compare the halo mass function at z = 0. Halos
are identified with VELOCIrRAPTOR (Elahi et al. 2019) using a 6D
friends-of-friends algorithm applied to the cb particles. Spherical
overdensity masses are computed within spheres for which the den-
sity equals 200 times the mean CDM & baryon density pp,. The
reason for using p.p, instead of the total mass density pp, is that it is
this cold density field that produces universal and unbiased results
in halo model calculations (Ichiki & Takada 2012; Castorina et al.
2014; Massara et al. 2014). The results are shown Fig. 7. We once
again find per cent agreement between 2LPT and 3LPT over the
entire mass range, but large errors for the Zel’dovich runs. There
is an interesting pattern in the Zel’dovich error as the starting time
is varied. For late starts (solid red), the simulation agrees well at
the low-mass end but underestimates the number of very massive,
10 M, halos by more than 7%. This can be understood in terms
of the deficit of power seen also in Fig. 4, resulting in a suppressed
growth of large structures. Meanwhile, for early starts (dotted and
dashed red), the agreement at the high-mass end improves like the
small-scale power spectrum. However, the number of low-mass ha-
los decreases by a similar factor, likely due to discreteness errors.
This seems to be broadly consistent with the ACDM results of
Michaux et al. (2021), but not with Nishimichi et al. (2019) who
find little dependence on starting time at z = 0.

5.4 Dependence on neutrino mass

Thus far, we have focused on a single neutrino mass of ), m, =0.3
eV. However, it is of great interest to determine the effect of initial
conditions on the suppression of the power spectrum for different
neutrino masses. We consider three cases:

(i) massless neutrinos
(ii) degenerate Y, m, = 0.15 eV neutrinos (f,, = 0.011),
(iii) degenerate Y, m, = 0.30 eV neutrinos (f,, = 0.023).

MNRAS 000, 1-16 (2022)
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In each case, we adjust Q.qp, to keep the total matter density Qp
fixed. We primarily use lower resolution simulations with N, =
6003 particles in an L = 800 Mpc cube.

First, we consider the effect of LPT order. In Fig. 8, we show
the suppression of the CDM & baryon power spectrum relative to
the massless case, comparing ZA/ZA (solid), 2LPT/2LPT (dashed),
and 3LPT/3LPT (shaded). Evidently, it is crucial to compare like
with like simulation, keeping the LPT order and starting redshift
the same. Not doing so introduces large errors in the ratio, as might
be expected from the fixed neutrino mass results discussed above.
We illustrate this by including a dotted line for the ZA/2LPT ratio,
which is clearly off the mark. However, even when comparing like
with like, we find a residual error that is proportional to the neutrino
mass, rises with k, and peaks around the turn-over of the spoon.
This feature is most clearly visible at z = 1 for ZA, with a maximum
error of 0.05 f,,. The effect is already present in the initial conditions
and can be explained by a mass-dependent suppression of nonlinear
terms. As virialized structures grow, both the turn-over of the spoon
and the peak of the error move to larger scales. At z = 0, the error
is 0.025f, around k = 0.3 Mpc~!. On smaller scales, we see a
scatter of order 0.5%, treading outside the scale-dependent error
bars that correspond to a +0.005 eV shift in Y m,,. For 2LPT, both
the systematic effect and the noise are greatly suppressed, resulting
in 0.1%-level agreement with 3LPT even at early times.

Next, we consider the effect of the starting time of the simula-
tion. In Fig. 9, we show the suppression for simulations with 2LPT
ICs started at z = 127 (solid), z = 63 (dashed), z = 31 (shaded).
Once again, we compare like with like simulations. Even so, we
find a small residual effect with earlier starts overestimating the
suppression. The differences between z = 31 and z = 63 are mini-
mal for both neutrino masses. However, starting at z = 127 results
in (0.1, 0.2) f,, errors at z = (0, 1) for k > 1 Mpc™!. These errors
once again exceed the threshold for a +0.005 eV shiftin ), m, . Based
on the discussion above, and given that we are using 2LPT, we ex-
pect that truncation errors are small at both redshifts. This suggests
that the differences are caused by resolution effects, which grow
in importance with the starting redshift. To test this, we repeated
some of the simulations at a higher resolution with N, = 12003
particles, starting at z = 127 and z = 31. The ratio is shown as a
dotted line in the bottom panels of Fig. 9. The agreement between
the early and late starts improves to 0.1% up to k = 10 Mpc™! at
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z = 0, comparable to the low-resolution z = 63 start. However, the
suppression is still slightly overestimated at z = 1.

One possible alternative explanation is that errors could be
introduced by the back-scaling procedure (section 2.1). To test this
hypothesis, we repeated some of the simulations with “forward”
ICs, as in Elbers et al. (2021). We found nearly identical results for
these runs, ruling out this explanation. Another possibility is that the
errors could be the result of shot noise, since we use a particle-based
implementation of neutrino perturbations. However, this is unlikely
as the differences already appear at high redshift when shot noise
is highly suppressed due to our use of the ¢ f method. Finally, one
might expect differences due to relativistic effects that are increas-
ingly important for earlier starts. Once again, this is unlikely since
relativistic effects would appear on the largest scales, where the
differences shown in Fig. 9 are minimal. Since the error decreases
for the higher resolution runs, discreteness effects likely account for
the majority of the difference, with massive neutrino simulations
being more sensitive to such errors, due to the suppressed growth
of structure. Late starts can be utilized to minimize the effect of
particle resolution, as shown in Fig. 5.

6 DISCUSSION

We have investigated the use of higher-order Lagrangian initial con-
ditions (ICs) for cosmological simulations with massive neutrinos.
We solved the fluid equations for a neutrino-CDM-baryon model
with approximate time-dependence in the large- and small-scale
limits, finding that higher-order neutrino effects can be described
by scale-independent coefficients that are easy to implement in ex-
isting IC codes. To validate our approach, we constructed ICs based
on a rigorous treatment of the scale-dependent neutrino response
in 2LPT, obtaining agreement with our scheme to better than one
partin 103 up to k = 1 Mpc™! in the power spectrum of the evolved
CDM and baryon perturbations at late times.

Compared to these small differences, we find that the truncation
error associated with using the first-order Zel’dovich approximation
is much larger. For our fiducial model with Y, m, = 0.3 eV and a
starting redshift of z; = 31, the error is 4% in the power spectrum and
7% in the equilateral bispectrum around k = 0.5 Mpc~! at z = 0.
Ratios of statistics from simulations with different neutrino masses
can be calculated much more robustly, provided that the LPT order
and starting redshift are the same. Nevertheless, even such ratios
have a residual dependence on the ICs. For instance, Zel’dovich ICs
introduce a mass-dependent error in the suppression of the power
spectrum that grows with wavenumber k and redshift z, peaking
around the turn-over of the spoon. We also find that the starting time
of the simulation has an impact on the suppression over a wide range
of scales and redshifts. Simulations started at z; = 127 overestimate
the suppression of the power spectrum on small scales, compared
to later starts. While simulations can be started at higher redshifts
to reduce truncation errors, this also increases the importance of
particle resolution and relativistic effects. To minimize errors from
initial conditions and particle resolution, simulations can be started
at late times using higher-order ICs.

A major target of cosmological surveys is to measure the sum
of neutrino masses. Assuming the minimum value allowed under
the normal mass ordering, }; m, = 0.06 eV, cosmology could pro-
vide a 30 detection and rule out the inverted mass ordering at 20
by reaching a sensitivity of 0.02 eV, which is in reach of future cos-
mic microwave background and large-scale structure experiments
(Hamann et al. 2012; Abazajian et al. 2015; Brinckmann et al. 2019;

Chudaykin & Ivanov 2019). This corresponds to detecting 1% ef-
fects on the matter power spectrum on 0.1 Mpc™' < k < 1 Mpc™!
scales. We should therefore aim for neutrino simulations with errors
that are well below 1% on these scales. While Zel’dovich ICs fall
short of this mark, our findings suggest that 2LPT is sufficiently
accurate for most applications. Higher-order statistics at high red-
shift seem to be the notable exception, which could be relevant for
Lyman-a forest simulations.

The accuracy of neutrino simulations depends on many fac-
tors: the accuracy of the linear transfer functions and back-scaling
procedure (Lesgourgues & Tram 2011; Zennaro et al. 2017), the im-
plementation of neutrino perturbations (e.g. Bird et al. 2018; Elbers
et al. 2021), neutrino initial conditions (Elbers, in prep.), and dark
matter and baryon initial conditions (this paper). It has now been
demonstrated that each of these factors can be controlled to within
1%. The remaining uncertainty is likely dominated by the choice of
gravity solver. Achieving 1% agreement between different N-body
codes is non-trivial even in the absence of neutrinos (Schneider et al.
2016; Garrison et al. 2019; Grove et al. 2021). Fortunately, the ac-
curacy of N-body codes should not in the first place be expected to
deteriorate in the presence of neutrinos. In fact, the accuracy could
even improve for particle-based implementations due to ‘spectator’
effects (section 5.1). A systematic comparison of neutrino simu-
lations with different codes and identical initial conditions could
establish whether this is indeed the case. Such explorations would
improve our ability to simulate nonlinear clustering in Universes
with massive neutrinos, allowing us to meet the demands of the
next generation of surveys.
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APPENDIX A: DIFFERENCE AND SUM EQUATIONS

As in (34-36), the component fluid equations (20-21) can be rewrit-
ten using D as time variable and v = u, /0D as velocity:

aDwV/l +vy- VxV/l = -

Op,0a+Vx - [(1+62)va]l =0,

3800

2D @b

(Va+ Vxo),
(A2)

MNRAS 000, 1-16 (2022)

for A € {c,b} with ¢ = a®/(BgD) and g defined in (33). The
initial conditions at D = 0 must be v¢ = vy, = —Vxgp for (A1) not
to diverge. Taking the difference of (A1) for 4 = b and A = c gives
(A3)

8o
~57 Vbes

0D, Ve + Vb * VxVpe + Vie * VxVe =
2D

where vy = vy — V.. Notice that the neutrino contribution contained
in Vx¢ has dropped out. Consequently, we obtain results analogous
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to the ACDM case without massive neutrinos (Rampf et al. 2021).
Expand vy = 3>, Vflm) for 2 € {c,b} and vy = 3>, vl()'cn). At
first order, we find

(D _ 38w (1)
aDmeC = —mvbc . (A4)

Since g« is strictly positive (see Fig. 1), the only non-decaying
(1

solution is v, 7 = 0. As vy = O initially, this is the only solution.

bc
Suppose that vt()zn) =0form =1,...,n— 1. Then also
(n) _ _ 38 (w)
Voo =~ 3p Ve ° (&3)

with the only solution being V](JZ) = 0. It follows that v, = 0 at all

orders. Using this result and taking the mass-weighted average of
the component equations yields at all orders:

3800
0D Veb + Veb - VxVeh = _W(Vcb + Vxo), (A6)
Op,0cb + Vx - [(1+0cp)Vep] = 0. (A7)

Converting back to 7-time gives (22-23). Letting 6y, = dp — dc and
taking the difference of (A2) for 4 = b and A = ¢ also gives

0Dy 0be *+ Vx - [ObeVeb] = 0. (A8)

Inserting 6. = Zi:l 6](32"), we find that 5&) = constant at first

order, as in the case without neutrinos.

APPENDIX B: ANALYTIC SOLUTION

We seek a solution to
B

02D +aHo.D = -°D. (B1)
a

To express the solution as a function of the scale factor, a(7), we
switch time variables to log a and define the new velocity variable,
licp = ucp/(aH). Eq. (B1) is then written as

2
d*D [ dlogH] dD By D (B2)
d(loga)? dloga

dloga a3H?2
The hypergeometric function > Fj(c,d, e, z) is a solution of the
differential equation

2
F F
Z(l—z)d—+[e—(c+d+1)z]d——ch:O. (B3)
dz? dz

Given the Ansatz D(a) = aPV1+ Ad3F(z) with z = —Ad> and
A = Q\ /Qm, we obtain after some algebra

(I_Z)W+ 2(p+1)(1—Z)—3Z—5] dloga B
3 21
- (p2+§—5(1—.fv))—(p2+5p+7)Z]F-

To bring this in the form of (B3), we require

p:%(i\/1+24(1—fy)—1), (B5)

where the positive sign picks the growing solution. Using this in
(B4), we obtain

d2 1 7 dF
(l-2)—+= |2p+= - (2p+8)z| — =
dz2 3 2 dz
o (B6)
2
— 5p+ = | F.
ol L o

Identifying constants in (B3) and (B6), we derive the desired ex-
pression

2p+7 2p+3 4
D(a) = aP 1 + Ad3,Fy ”6+7, p6+3, p6+7,—Aa3 ., (B7)

with p = /T +24(1 - f,,)/4 - 1/4.

APPENDIX C: FRAME LAGGING

Let S(x) = (6¢p * @) (x). Since S is itself first order, we have up to
second order that

as
Sx)=S(q+¥) =S(@)+ - vi(q). cn
dilg
Denoting the Fourier transform of S(x) as F {S(x)}, we find that
N
T{S(X)}=T{S(q)}+7”{a—q, }*T{l/fi(q)}- (C2)
tlq

To be more explicit, we will denote the Fourier transform of S(x)
by §*(k) and the Fourier transform of S(q) by S (k). The above
identity can then be written as

ik} S9 (ky)y; (ko) (C3)

1,52

S*(k) = 89 (k) +/
k
where /k. K = [ dkydky (2m)706 (k; + k; — K). Similarly,

ik, 6% (k1) (k). (C4)

34,00 = a3, 00 - [
ki ko

Combining the last two equations, we obtain

a* (k)og, (k) = a? K)oy, (k) - F(k), (C5)

where we denote the so-called “frame-lagging” terms by
F(k) = /k ] o 1) = 0% k)] o8 (ki (ko). (C6)
1,k2

Now, since 6§b =1/J — 1, we obtain the result used in section 4.2:

[6cb * ] (x) = [(1/J = 1) x a](q) - F(q). (o)

We now rewrite the second-order frame-lagging terms using the
Monge-Ampere equation, obtaining

FOM = [ a9 - ot kK" o). (€3
1,K2

APPENDIX D: TERMS UP TO THIRD ORDER

We give explicit expressions up to third order. For n = 2, both the
cubic term on the right-hand side of (56) and the quadratic term on
the right-hand side of (57) vanish. Hence, only the quadratic term
in (56) contributes. Using €; jx€ipg = 0jpOkg — 040k p, We find

3g00 1

N
vy 4+3g00 2

1 1 1 1
] R
The corresponding ACDM coeflicient (3/7) is found by setting goo =
1. Dividing these coefficients, one obtains the scale-independent

factor Cy = 7g/(4 + 3g). For n = 3, we obtain two pieces from
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(56) and one piece from (57), giving ¢ =y 3@) 4y (3b) 1y (3c),
Using detA;; = (1/6)€; jx€pgrAipAjqAkr, We can write these as

v.yBa — _ 8o (1) Do
v 2+ goo dety; ;- (D2)
4+6g5 1
3 _ _A*08 L (1) (2) _ (D) (2)
Vo= 6+3g80 2 ViV Vvl (D3)
1
v x g = ‘§V‘/’i(2) lepi(l). O

The corresponding ACDM terms are again found by setting goo = 1.
Expressing these in terms of potentials (7-10) and dividing the
corresponding coefficients, we obtain the form given in section 2.2
in terms of Cy, C3, C3.
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