Publications

Jeger C. Broxterman et al. (2023), The FLAMINGO project: Baryonic impact on weak gravitational lensing convergence peak counts, arXiv:2312.08450. Available at https://arxiv.org/abs/2312.08450.

Joey Braspenning et al. (2023), The FLAMINGO Project: Galaxy clusters in comparison to X-ray observations, arXiv:2312.08277. Available at https://arxiv.org/abs/2312.08277.

Imogen Towler, Scott T. Kay, Joop Schaye, Roi Kugel, Matthieu Schaller, Joey Braspenning, Willem Elbers et al. (2023), The splashback radius for dark matter, gas and observables in the FLAMINGO simulations, arXiv:2312.05126. Available at https://arxiv.org/abs/2312.05126.

Ian G. McCarthy, Jaime Salcido, Joop Schaye, Juliana Kwan, Willem Elbers et al. (2023), The FLAMINGO project: revisiting the S_8 tension and the role of baryonic physics, Monthly Notices of the Royal Astronomical Society, 526 (4), 5494-5519. Available at https://doi.org/10.1093/mnras/stad3107.

Amol Upadhye et al. (2023), Non-linear CMB lensing with neutrinos and baryons: FLAMINGO simulations vs. fast approximations, arXiv:2308.09755. Available at https://arxiv.org/abs/2308.09755.

Willem Elbers, Carlos S. Frenk, Adrian Jenkins, Baojiu Li, Silvia Pascoli, Jens Jasche, Guilhem Lavaux, and Volker Springel (2023), Where shadows lie: reconstruction of anisotropies in the neutrino sky, Journal of Cosmology and Astroparticle Physics, 10/010. Available at https://doi.org/10.1088/1475-7516/2023/10/010.

Roi Kugel, Joop Schaye, Matthieu Schaller, John C. Helly, Joey Braspenning, Willem Elbers et al. (2023), FLAMINGO: Calibrating large cosmological hydrodynamical simulations with machine learning, Monthly Notices of the Royal Astronomical Society, 526 (4), 6103-6127. Available at https://doi.org/10.1093/mnras/stad2540.

Joop Schaye, Roi Kugel, Matthieu Schaller, John C. Helly, Joey Braspenning, Willem Elbers et al. (2023), The FLAMINGO project: cosmological hydrodynamical simulations for large-scale structure and galaxy cluster surveys, Monthly Notices of the Royal Astronomical Society, 526 (4), 4978-5020. Available at https://doi.org/10.1093/mnras/stad2419.

Matthieu Schaller et al. (2023), Swift: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications, arXiv:2305.13380. Available at https://doi.org/10.1088/1475-7516/2023/10/010.

Euclid Collaboration: Julian Adamek et al. (2023), Euclid: Modelling massive neutrinos in cosmology a code comparison, Journal of Cosmology and Astroparticle Physics, 06/035. Available at https://doi.org/10.1088/1475-7516/2023/06/035.

Willem Elbers and Rien van de Weygaert (2023), Persistent topology of the reionization bubble network – II. Evolution & Classification, Monthly Notices of the Royal Astronomical Society, 520 (2), 2709–2726. Available at https://doi.org/10.1093/mnras/stad120.

Willem Elbers (2022), Geodesic motion and phase-space evolution of massive neutrinos, Journal of Cosmology and Astroparticle Physics, 11/058. Available at https://doi.org/10.1088/1475-7516/2022/11/058.

Willem Elbers, Carlos S. Frenk, Adrian Jenkins, Baojiu Li, and Silvia Pascoli (2022), Higher order initial conditions with massive neutrinos, Monthly Notices of the Royal Astronomical Society, 516 (3), 3821–3836. Available at https://doi.org/10.1093/mnras/stac2365.

Willem Elbers, Carlos S. Frenk, Adrian Jenkins, Baojiu Li, and Silvia Pascoli (2021), An optimal nonlinear method for simulating relic neutrinos, Monthly Notices of the Royal Astronomical Society, 507 (2), 2614-2631. Available at https://doi.org/10.1093/mnras/stab2260.

Willem Elbers and Rien van de Weygaert (2019), Persistent topology of the reionization bubble network – I. Formalism & Phenomenology, Monthly Notices of the Royal Astronomical Society, 486 (2), 1523-1538. Available at https://doi.org/10.1093/mnras/stz908.

See also:

  1. Google Scholar
  2. arXiv
  3. ADS
  4. INSPIRE-HEP

Check out some of my research projects.